Network science approach for enrichment analysis in breast and ovarian cancer

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Okimoto, Leandro Youiti Silva
Outros Autores: http://lattes.cnpq.br/3079897846370401
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/7231
Resumo: A identificação imprecisa das características do câncer pode levar o paciente a tratamentos agressivos e desnecessários. Portanto, é crucial identificar as características intrínsecas do tumor de forma mais precisa para propor tratamentos individualizados. Neste trabalho, apresentamos uma breve explicação dos fundamentos e pesquisas em teoria de grafos computacionais que buscam resolver problemas de identificação, classificação e caracterização de certos tipos de câncer. Nós propusemos uma nova abordagem baseada em Análise de Redes para encontrar listas de genes que servirão de entrada para análise de enriquecimento em câncer de mama e ovário usando informação proteogenômica. Em nossos resultados, mostramos que nossa abordagem é capaz de capturar processos biológicos e conjuntos de genes relacionados ao câncer e a outros processos, o que abre uma série de possibilidades para novos estudos.