Detecção de opiniões e análise de polaridade em documentos financeiros com múltiplas entidades.
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/4071 |
Resumo: | Análise de polaridade consiste em classificar a opinião do autor em positiva, negativa e neutra. No entanto, dado o grande volume de informações disponíveis na Web, esta análise manual torna-se inviável. Em particular, no domínio financeiro este tipo de análise é útil para empresas na tomada de decisões relacionadas ao mercado financeiro que parece ser particularmente propenso a mudanças de acordo com opiniões. Os trabalhos disponíveis na literatura propõem abordagens globais para esta tarefa, ou seja, consideram que o texto tem apenas uma polaridade. No entanto, verifica-se que os documentos, em sua grande maioria, citam várias entidades e as polaridades para estas entidades, em geral, são diferentes. Isto sugere que a classificação de polaridade deve ser feita em nível de entidade. Contudo, a maioria das abordagens tradicionais não concentram-se na tarefa de classificar polaridade por entidade. Além disso, observamos que muitos dos documentos no domínio financeiro nem sempre emitem opinião. Assim, uma primeira tarefa de interesse nesse domínio é identificar os documentos em que opiniões são expressas, isto é, documentos subjetivos. Portanto, neste trabalho propomos um método supervisionado para classificação de polaridade baseado em múltiplos modelos com o intuito de classificar documentos financeiros com múltiplas entidades. Em particular, estudamos estratégias de segmentação em texto que usam heurísticas de casamento de string e resolução de anáfora e propomos um método de classificação hierárquica baseada em detecção de subjetividade. Nossos resultados mostraram que uma abordagem baseada em múltiplos modelos é capaz de obter ganhos significativos sobre uma abordagem baseada em modelo global na tarefa de classificação de polaridade com múltiplas entidades. A segmentação do documento em sentenças que mencionam as entidades e a adoção de uma estratégia hierárquica também obtiveram ganhos, embora modestos. |