Analise de sentimento em documentos financeiros com múltiplas entidades
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/4122 |
Resumo: | Dado o volume de infoma ção disponivel na Internet torna-se inviavel a analise manual do conteudo disponvel para identi car diversas informações de interesse. Entre v arias analises de interesse, uma de destaque e a an alise de polaridade da opinião, ou seja, a classificação de um documento textual em positivo, negativo ou neutro, em rela cão a um certo topico. Esta tarefa e particularmente util no dom nio fi nanceiro, onde not cias sobre uma empresa podem afetar o seu desempenho em mercados de a cões. Embora a maioria dos m etodos nesse dom nio considere que os documentos possuem uma unica polaridade, observamos que a maioria deles e constitudo de multiplas entidades e o alvo da analise de polaridade e, em geral, as entidades que estes documentos referenciam. O objetivo deste trabalho e, portanto, estudar estrategias para a detecção de polaridade em documentos financeiros com multiplas entidades. Para tanto, estudamos m etodos baseados na cria c~ao de multiplos modelos de aprendizado com um conjunto pr e-de nido de entidades, usando o classi cador SVM. N os avaliamos tanto modelos baseados em conjuntos de documentos especcos por entidade quanto modelos baseados em segmentação de documentos usando diversas heursticas de processamento de linguagem natural. Os resultados mostraram que h a um ganho em fragmentar os textos para an alise de polaridade com r otulos de classi ca cão por entidades. |