Reconhecimento e análise de rachaduras a partir de imagens para monitoramento em regiões com atividade sísmica frequente

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lima, João Miguel Correia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alagoas
Brasil
Programa de Pós-Graduação em Informática
UFAL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufal.br/handle/riufal/7280
Resumo: In riskareas,especiallythosecausedbyfrequentseismicmovements,itisnecessarytomonitor eventssuchaschangesinthesizeofcracksinbuildingsandotherurbanstructures.This process, especiallyinregionswithoutadequateinfrastructure,iscarriedoutthroughempirical observationsmadebytheoccupantsoftheseareasthemselves.Thisactivity,byitsverynature, results ininaccurateandoutdateddatacollection,giventhetimelapsebetweencollectionand measurement ofchanges,whichshouldbedonebyaspecialist.Inthispaper,wepropose algorithms basedoncomputervision,toautomatethisprocessbyemployingDeepLearning techniques. Thus,itispossibleforthecomputertodetectcracksandproperlymeasurecracksin images senttoresponsibleagenciesbyresidents,providingagilityindetectingpotentialrisks to people’sphysicalintegrity,whileprovidingexpertswithaccuratedataforactioneffective preventive.Wewilluseasthesituationexperiencedbyresidentsofsomeneighborhoodsinthe city ofMaceió,stateofAlagoas,Brazil,whererulersarecurrentlyemployedtoidentifythe advanceorindentationsofcracksinrealestate,whicharephotographeddailyandtheimages sent tosecurityagencies.Inthepresentworkwepresentaprocessdividedintothreesteps:The first istheidentificationofpointsofinterestintheruler,suchasdigits,usingtheYOLO,adeep neural networkarchitecture,thenwepresentanalgorithmtofilterthecorrectdigitsandfinallyto identify thecrackanditswidthbyapplyingimageprocessingalgorithmandcameracalibration. Thus, aftertheexperiments,wewereabletoachieve75,65%accuracywhenusingthedarktext implementation with31convolutionallayers.Therefore,thiswork,besidesbeinglifesaving,is also alowcosttoolforstructuralinspection. Keywords: