Partial least squares: a deep space odyssey
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/36877 |
Resumo: | Modelos modernos de reconhecimento de padrões visuais são predominantemente baseados em redes convolucionais uma vez que elas têm levado a uma série de avanços em diferentes tarefas. A razão para estes resultados é o desenvolvimento de arquiteturas maiores e a combinação de informações de diferentes camadas da arquitetura. Tais modelos, entretanto, são computacionalmente custosos dificultando aplicabilidade em sistemas com recursos limitados. Para lidar com esses problemas, propomos três estratégias. A primeira remove estruturas (neurônios e camadas) das redes convolucionais, reduzindo seu custo computacional. A segunda insere estruturas para desenvolver redes automaticamente, permitindo construir arquiteturas de alta performance. A terceira combina múltiplas camadas das arquiteturas, aprimorando a representação dos dados com custo adicional irrelevante. Estas estratégias são baseadas no Partial Least Squares (PLS), uma técnica de redução de dimensionalidade. Mostramos que o PLS é uma ferramenta eficiente e eficaz para remover, inserir e combinar estruturas de redes convolucionais. Apesar dos resultados positivos, o PLS é inviável a grandes conjuntos de dados como ele requer que todos os dados estejam na memória, o que é frequentemente impraticável devido a limitações de hardware. Para contornar tal limitação, propomos uma quarta abordagem, um PLS incremental discriminativo e de baixa complexidade que aprende uma representação compacta dos dados usando uma única amostra por vez, permitindo aplicabilidade em grandes conjuntos de dados. Avaliamos a efetividade das abordagens em várias arquiteturas convolucionais e tarefas supervisionadas de visão computacional, que incluem classicação de imagens, verificação de faces e reconhecimento de atividades. Nossas abordagens reduzem a sobrecarga de recursos computacionais das redes convolucionais e do PLS, promovendo modelos eficientes em termos de energia e hardware para cenários acadêmicos e industriais. Em comparação com métodos de última geração para o mesmo propósito, obtemos um dos melhores compromissos entre capacidade preditiva e custo computacional. |