Elaboração de um analisador virtual utilizando sistema híbrido neuro-fuzzy para inferir a composição num processo de destilação
Ano de defesa: | 2011 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Alagoas
Brasil Programa de Pós-Graduação em Engenharia Química UFAL |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.repositorio.ufal.br/handle/riufal/1289 |
Resumo: | This work describes a procedure for a soft sensor design to predict the top composition of a methanol-water distillation column. Soft sensor is a mathematical model that is used to estimate variables of interest from secondary variables easy to measure. This technique comes from an operational difficulty or high cost obtaining the desired variable. The approach to build a soft sensor was an artificial intelligence modeling, a black-box type, using a hybrid neuro-fuzzy technique. The data acquisition to train and validate the soft sensor comes from a mathematical model validated from pilot plat data. One of the limitations of neuro-fuzzy system is that it works with a limited number of inputs, depending on the combinatorial explosion of fuzzy rules. To minimize these effects and to reduce the number of rules in the training data sets of virtual analyzer, a data clustering technique called substractive clustering was used. To obtain a better performance of soft sensor for the dynamic process, distillation column, a regression of lone sampling time in selected variables was used, changing the number of entries from 9 to 18 variables, nine variables at actual sampling time and nine variables at previous sampling time. The distillation column is a good process for the present study because composition measurements are the main objective of this process and are difficult to obtain. The computational strategy for a soft sensor design produced good results in estimating the top composition of the methanol-water distillation column. |