[pt] MODELAGEM E CONTROLE NEURO-FUZZY DE SISTEMAS DINÂMICOS

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: GIOVANE QUADRELLI
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2701&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2701&idi=2
http://doi.org/10.17771/PUCRio.acad.2701
Resumo: [pt] Este trabalho apresenta procedimentos de modelagem e controle neuro-fuzzy de sistemas dinâmicos. Neste contexto, é proposta e avaliada a utilização simultânea da abordagem neuro-fuzzy em todo o sistema de malha fechada controlador-planta.Na modelagem da planta, o espaço de entrada do sistema dinâmico é inicialmente dividido em um número de regiões de operação fuzzy onde modelos de ordem reduzida (ARMAX) representam o comportamento do sistema dinâmico. A saída completa do sistema - modelo global - é obtida através da conjunção das saídas dos modelos locais usando uma rede neuro-fuzzy.No controle da planta, é proposto um novo controlador neuro-fuzzy chamado Controlador Neuro-fuzzy de Coeficientes Variáveis (CNFCV), que tem como objetivos melhorar a robustez do sistema de controle a perturbações e a geração automática da variável manipulada, que é uma dificuldade normalmente encontrada em controladores neurais ou neuro-fuzzy. Esse controlador é originado dos modelos de redes neurais de Mellem (1997) e Velloso (1999), e utiliza redes neuro-fuzzy para a geração dos coeficientes variáveis de um modelo ARMA da variável manipulada. Apesar de juntar modelos de séries temporais com a abordagem neuro-fuzzy, o CNFCV tem como função não a previsão, mas sim o controle de uma planta ou processo.Para avaliar o desempenho do CNFCV são utilizados, como meios de comparação,controladores neuro- fuzzy conhecidos - FALCON-H Fuzzy Adaptive Learning Control Network with Hybrid Learning e NEFCON Neuro-Fuzzy Controller - e o tradicional controlador PID Proporcional- Integral-Derivativo.As plantas utilizadas são uma planta linear Bobinador, uma planta linearizada Pêndulo Invertido e uma planta não linear %CO2. A escolha de tais plantas deve-se ao fato de serem utilizadas e modeladas em aplicações práticas e em trabalhos acadêmicos. Os resultados obtidos com o CNFCV são analisados e comparados aos proporcionados pelas outras estruturas.Ao final são apresentadas conclusões e sugestões para trabalhos futuros.