Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Zanata, Diogo Rafael Prado |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3139/tde-21022006-163655/
|
Resumo: |
Sensores virtuais empregando modelos de inferência da composição(responsável pela qualidade) dos produtos de uma coluna de destilação correspondem a medidores implementados em software, capazes de estimar, em tempo real, a composição dos produtos da mesma, a partir de informações do tipo temperaturas e pressões em diversos pontos da coluna e vazões de entrada, de saída e de reciclo. O objetivo deste trabalho é obter esse tipo de sensor para uma coluna de destilação, capaz de estimar instantaneamente a composição dos produtos no topo de uma coluna de destilação multicomponente com condensador parcial, empregando redes neurais artificiais. Foi desenvolvido um simulador dinâmico baseado em modelo não-linear da coluna para aquisição de dados. Neste projeto foi incluído um estudo sobre a influência do treinamento parcial no desempenho do sensor virtual. A idéia é estudar o desempenho para o caso de um sensor virtual treinado de antemão, com dados coletados a partir de um simulador da coluna. Este procedimento disponibiliza um sensor operacional, treinado através de um conjunto de dados simulados ou através de um pequeno conjunto de pontos e retreinado, quando dados reais ou um conjunto maior de dados estiver disponível. Outra contribuição importante é o estudo realizado sobre os principais erros que podem ocorrer neste tipo de sensores, que são raramente tratados em publicações científicas. É também proposta uma metodologia para detecção e correção destes erros que foram encontrados e que afetam o comportamento do sensor, alterando sua precisão e capacidade de ser utilizado em um controle inferencial da planta. |