Síntese de comitê de árvores de padrões fuzzy através da programação genética cartesiana em ambientes não estacionários

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Jorge, Patrícia Macedo da Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Faculdade de Engenharia
BR
UERJ
Programa de Pós-Graduação em Engenharia Eletrônica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/11758
Resumo: A extração de dados em ambientes não estacionários requer técnicas diferentes das tradicionalmente utilizadas no aprendizado supervisionado. Aplicações como medição de temperatura por sensores, detecção de spam, previsão climática e preferência de compras de um consumidor são alguns dos exemplos de situações para as quais não é possível se supor que a distribuição dos dados não mudará no decorrer do tempo. Ambientes onde este cenário ocorre é caracterizado por mudanças denominadas concept drift. Neste trabalho é proposto um método baseado em um comitê de classificadores de árvores de padrões fuzzy, induzidos pela programação genética cartesiana, o qual deve ser capaz de se auto adaptar e manter o desempenho acurado, além de fornecer conhecimento de forma a auxiliar na tarefa de análise e interpretação dos dados. Para a execução dos experimentos foram analisadas bases de dados reais e artificiais com drifts distintos, alta dimensionalidade e diferentes balanceamentos entre as classes. Os resultados mostraram que o método é robusto e competitivo em comparação com outros da literatura.