Síntese de árvores de padrões Fuzzy através de Programação Genética Cartesiana.
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Faculdade de Engenharia BR UERJ Programa de Pós-Graduação em Engenharia Eletrônica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.bdtd.uerj.br/handle/1/11821 |
Resumo: | Esta dissertação apresenta um sistema de indução de classificadores fuzzy. Ao invés de utilizar a abordagem tradicional de sistemas fuzzy baseados em regras, foi utilizado o modelo de Árvore de Padrões Fuzzy(APF), que é um modelo hierárquico, com uma estrutura baseada em árvores que possuem como nós internos operadores lógicos fuzzy e as folhas são compostas pela associação de termos fuzzy com os atributos de entrada. O classificador foi obtido sintetizando uma árvore para cada classe, esta árvore será uma descrição lógica da classe o que permite analisar e interpretar como é feita a classificação. O método de aprendizado originalmente concebido para a APF foi substituído pela Programação Genética Cartesiana com o intuito de explorar melhor o espaço de busca. O classificador APF foi comparado com as Máquinas de Vetores de Suporte, K-Vizinhos mais próximos, florestas aleatórias e outros métodos Fuzzy-Genéticos em diversas bases de dados do UCI Machine Learning Repository e observou-se que o classificador APF apresenta resultados competitivos. Ele também foi comparado com o método de aprendizado original e obteve resultados comparáveis com árvores mais compactas e com um menor número de avaliações. |