[pt] APRENDIZAGEM NEUROEVOLUTIVA E DETECÇÃO DE CONCEPT DRIFT EM AMBIENTES NÃO ESTACIONÁRIOS

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: TATIANA ESCOVEDO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26748&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26748&idi=2
http://doi.org/10.17771/PUCRio.acad.26748
Resumo: [pt] Os conceitos do mundo real muitas vezes não são estáveis: eles mudam com o tempo. Assim como os conceitos, a distribuição de dados também pode se alterar. Este problema de mudança de conceitos ou distribuição de dados é conhecido como concept drift e é um desafio para um modelo na tarefa de aprender a partir de dados. Este trabalho apresenta um novo modelo neuroevolutivo com inspiração quântica, baseado em um comitê de redes neurais do tipo Multi-Layer Perceptron (MLP), para a aprendizagem em ambientes não estacionários, denominado NEVE (Neuro-EVolutionary Ensemble). Também apresenta um novo mecanismo de detecção de concept drift, denominado DetectA (Detect Abrupt) com a capacidade de detectar mudanças tanto de forma proativa quanto de forma reativa. O algoritmo evolutivo com inspiração quântica binário-real AEIQ-BR é utilizado no NEVE para gerar automaticamente novos classificadores para o comitê, determinando a topologia mais adequada para a nova rede, selecionando as variáveis de entrada mais apropriadas e determinando todos os pesos da rede neural MLP. O algoritmo AEIQ-R determina os pesos de votação de cada rede neural membro do comitê, sendo possível utilizar votação por combinação linear, votação majoritária ponderada e simples. São implementadas quatro diferentes abordagens do NEVE, que se diferem uma da outra pela forma de detectar e tratar os drifts ocorridos. O trabalho também apresenta resultados de experimentos realizados com o método DetectA e com o modelo NEVE em bases de dados reais e artificiais. Os resultados mostram que o detector se mostrou robusto e eficiente para bases de dados de alta dimensionalidade, blocos de tamanho intermediário, bases de dados com qualquer proporção de drift e com qualquer balanceamento de classes e que, em geral, os melhores resultados obtidos foram usando algum tipo de detecção. Comparando a acurácia do NEVE com outros modelos consolidados da literatura, verifica-se que o NEVE teve acurácia superior na maioria dos casos. Isto reforça que a abordagem por comitê neuroevolutivo é uma escolha robusta para situações em que as bases de dados estão sujeitas a mudanças repentinas de comportamento.