Análise de crédito utilizando inteligência artificial: validação com dados do cartão BNDES

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Fonseca, Oswaldo Luiz Humbert
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto Politécnico
BR
UERJ
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/13656
Resumo: O presente trabalho apresenta um estudo feito para a elaboração de um modelo de análise de crédito para micro, pequenas e médias empresas (MPME) utilizando Inteligência Artificial. Apresenta, também, uma contribuição de um novo método de raciocínio baseado em casos, denominado FISKNN, que utiliza medida de similaridade presente nos métodos KNN e KNN-Fuzzy, e um sistema de inferência Fuzzy para decidir se a classe de um determinado caso é a classe do elemento mais próximo ou a classe da maioria dos K elementos selecionados para análise. Compara-se o método FISKNN com os métodos tradicionais KNN e KNN-Fuzzy utilizando os dados do Machine Learning Repository da Universidade da Califórnia, e apresentam-se três estudos de casos com bases de dados selecionadas das informações provenientes de solicitações de financiamento através do Cartão BNDES.