Aplicação do método da Transformada de Laplace com representação matricial para modelagem computacional do fenômeno do decaimento radioativo

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Oliveira, Deise Lilian de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto de Matemática e Estatística
BR
UERJ
Programa de Pós-Graduação em Ciências Computacionais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/7726
Resumo: O decaimento radioativo é um fenômeno físico que pode ser modelado através de recursos computacionais simples, utilizando os aspectos das duas grandes escolas de modelagem matemática: a escola determinística e a escola probabilística. Neste trabalho, estaremos focados na escola determinística. A modelagem matemática caracteriza-se por um problema de valor inicial com uma cadeia simples ou composta de decaimentos radioativos de acordo com a história de um núcleo atômico-pai decair para um núcleo-filho, que é radioativamente estável ou não. Descrevemos nesta dissertação um aplicativo computacional (um software) que modela o decaimento radioativo simples, i.e. , decaimento para núcleos estáveis, e decaimento em cadeia diretamente acoplada. Implementamos neste aplicativo computacional um método analítico fundamentado na Transformada de Laplace usando uma plataforma computacional livre (Scilab). Para tanto, aplicamos uma formulação matricial e uma técnica de diagonalização por transformação de similaridade, onde propomos uma forma de construção ao da matriz diagonalizante e de sua inversa, que são necessárias. Apresentamos resultados numéricos para três problemas-modelos típicos.