Análise Comparativa do Desempenho a Numérico de Técnicas de Inversão da Transformada de Laplace.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Amaral, Gleyber Conceição Martuchele do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.furg.br/handle/1/8830
Resumo: Neste trabalho, apresenta-se uma análise comparativa de três técnicas numéricas utilizadas para solucionar problemas relacionados a Transformada Inversa de Laplace. Os métodos apresentados têm embasamento teórico nas formulações das Séries de Potências e da Integral Complexa de Inversão. Inicialmente, procurou-se avaliar o desempenho numérico dos algoritmos implementados para inverter a Transformada de Laplace utilizando os métodos de Expansão em Serie de Potências, Quadratura Gaussiana e Talbot. Realizaram-se testes no sentido de quantificar o potencial de resolução desses recursos ao serem aplicados as transformadas de funções elementares. Esta análise foi estendida a um problema de transporte de nêutrons, na versão em ordenadas discretas SN, em geometria Cartesiana unidimensional, comparando os resultados numéricos com a inversão analítica, obtida através da fórmula de desenvolvimento de Heaviside. Convém ressaltar que neste estudo não se pretende indicar o melhor método para calcular a Transformada inversa de Laplace, e sim avaliar a eficiência numérica com base nos resultados obtidos a partir das simulações realizadas.