Busca por matéria escura no CMS/LHC: um estudo de implementação de métodos de aprendizado de máquina e aplicação de fatores de correção para jatos de quark bottom
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto de Física Armando Dias Tavares Brasil UERJ Programa de Pós-Graduação em Física |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.bdtd.uerj.br/handle/1/20641 |
Resumo: | Nesse trabalho é apresentado um estudo da implementação de algoritmos de aprendizado de máquina e correção de eventos de simulação com a presença de jatos provenientes do quark bottom na busca por matéria escura fermiônica produzida através do processo de decaimento de um bóson de Higgs (H) pesado originado da quebra de simetria espontânea de dois dupletos de Higgs. O estado final do processo ¯bbZ (→ℓ¯ℓ)+E T(a → χ¯χ) é sondado utilizando todos os dados disponíveis no Run-2 do LHC/CMS. A presença de jatos provenientes de quark bottom no estado final tornam obrigatória a correção dos eventos de simulação de modo que exista uma boa concordância com os dados. Devido à baixa seção de choque do sinal, a performance e discriminantes dos algoritmos XGBooste Multi Layer Perceptron foram comparados para melhor determinação da sensibilidade do sinal. |