Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Machado, Bruna Neves
 |
Orientador(a): |
Vaz, Maria Salete Marcon Gomes
 |
Banca de defesa: |
Morais, Erickson Freitas de,
Britto Junior, Alceu de Souza |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual de Ponta Grossa
|
Programa de Pós-Graduação: |
Programa de Pós Graduação Computação Aplicada
|
Departamento: |
Departamento de Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.uepg.br/jspui/handle/prefix/3449
|
Resumo: |
A classificação de grãos na agricultura é feita de forma manual, onde deve ser analisado grão a grão para que os grãos sejam alocados em suas respectivas classes. A identificação das classes dos grãos é feita visualmente, onde é feita a análise da cor e o estado em que o grão se encontra. Essa classificação é feita, geralmente, por profissionais especializados na área que podem demandar muito tempo para classificar uma pequena quantidade de grãos. O tempo para realizar a classificação manual é fundamental para que os grãos sejam avaliados e enviados para os consumidores o mais rápido possível. Neste trabalho foi apresentado um modelo de padrão de metadados para a classificação de grãos, um aplicativo para estruturar os metadados em HTML ou em XML, além de um método computacional para a classificação de grãos de soja da espécie Glycine max onde redes neurais convolucionais foram utilizadas. As redes neurais convolucionais utilizadas foram as Resnet34, MobileNet e VGG19. A rede foi treinada com base nos dados de defeitos de grão. Foram consideradas 9 (nove) classes de grãos de soja, onde cada classe continha 100 (cem) imagens. O resultado alcançado da Resnet34 foi de 99,55% de acurácia com o uso de data augmentation, e 80,85% sem o uso dessa técnica. As redes MobileNet e VGG19 obtiveram uma acurácia de 97,33% e 97,22% com o uso do data augmentation respectivamente. |