MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Rosa, Renan de Paula lattes
Orientador(a): Vaz, Maria Salete Marcon Gomes lattes
Banca de defesa: Britto Junior, Alceu de Souza, Joris, Hélio Antônio Wood
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Ponta Grossa
Programa de Pós-Graduação: Programa de Pós Graduação Computação Aplicada
Departamento: Departamento de Informática
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/2747
Resumo: As pragas em lavouras causam prejuízos econômicos na agricultura, reduzindo a produção e consequentemente os lucros. O manejo de pragas é essencial, para reduzir estes prejuízos, e consiste na identificação e posterior controle desse tipo de ameaça. O controle é fundamentalmente dependente da identificação, pois é a partir dela que o manejo é feito. A identificação é feita visualmente, baseando-se nas características da praga. Essas características são inerentes e diferem de espécie para espécie. Devido à dificuldade da identificação, esse processo é realizado principalmente por profissionais especializados na área, o que acarreta na concentração do conhecimento. Esta dissertação apresenta uma metodologia para classificação de pragas por meio de técnicas de computação, onde um sistema computacional do tipo clienteservidor foi criado a fim de prover a classificação de pragas por meio de serviço, que é realizado pelo uso de rede neural convolucional baseada na arquitetura Inception V3. As pragas Anticarsia Gemmatalis, Helicoverpa armigera e Spodoptera Cosmioides, foram escolhidas para classificação por serem bastante comuns no estado do Paraná. A rede neural convolucional obteve índice de acerto de 92,5%.