[en] CONVOLUTIONAL NETWORKS APPLIED TO SEISMIC NOISE CLASSIFICATION
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51974&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51974&idi=2 http://doi.org/10.17771/PUCRio.acad.51974 |
Resumo: | [pt] Modelos baseados em redes neurais profundas como as Redes Neurais Convolucionais proporcionaram avanços significativos em diversas áreas da computação. No entanto, essa tecnologia é ainda pouco aplicada à predição de qualidade sísmica, que é uma atividade relevante para exploração de hidrocarbonetos. Ser capaz de, rapidamente, classificar o ruído presente em aquisições de dados sísmicos permite aceitar ou rejeitar essas aquisições de forma eficiente, o que além de economizar recursos também melhora a interpretabilidade dos dados. Neste trabalho apresenta-se um dataset criado a partir de 6.918 aquisições manualmente classificadas pela percepção de especialistas e pesquisadores, que serviu de base para o treinamento, validação e testes de um classificador, também proposto neste trabalho, baseado em uma rede neural convolucional. Em resultados empíricos, observou-se-se um F1 Score de 95,58 porcento em uma validação cruzada de 10 folds e 93,56 porcento em um conjunto de holdout de teste. |