Previsão de epidemias através do Twitter
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual da Paraíba
Pró-Reitoria de Pós-Graduação e Pesquisa - PRPGP Brasil UEPB Programa de Pós-Graduação Profissional em Ciência e Tecnologia em Saúde - PPGCTS |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2772 |
Resumo: | Visando uma melhor gestão dos recursos e democratização dos serviços de saúde, o DATASUS disponibiliza de uma base de dados com informações relevantes para a quantificação e a avaliação das informações em saúde. Porém, uma dificuldade encontrada é que nem sempre os dados obtidos pelos meios oficiais são disponibilizados em tempo hábil e muitas vezes só são disponibilizados quando uma epidemia já se encontra fora de controle, não dando tempo para medidas de prevenção dos órgãos públicos. Nesse contexto existe a necessidade de investigar outros métodos que possibilitem a obtenção e análise de dados para a disseminação de informações necessárias às ações preventivas em saúde. Portanto, o objetivo principal dessa dissertação é propor uma metodologia para análise de epidemias a partir da rede social Twitter. Para isso, foi realizado um estudo de caso no qual buscou-se identificar os casos suspeitos de febre Chikungunya no Brasil a partir dos sintomas relatados pelos usuários na rede social. Então, com o uso de técnicas de mineração de texto foram verificados 258.707 tweets com algum sintoma da doença, durante o período de 15 de agosto de 2015 a 31 de janeiro de 2016. Os resultados mostram uma alta correlação entre os casos verificados na rede social com os casos notificados pela Secretaria de Vigilância em Saúde, o que indica que a rede social do Twitter pode ser utilizada como meio para análise e previsão de epidemias. Desse modo, também podemos concluir que os sintomas podem ser utilizados como parâmetro para detecção de focos da epidemia. |