Análise e dimensionamento de vigas-parede em concreto armado utilizando o método biela-painel

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Mello, André Felipe Aparecido de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Civil
Programa de Pós-Graduação em Engenharia Civil
UEM
Maringá, PR
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.uem.br:8080/jspui/handle/1/3526
Resumo: Concerning the design of reinforced concrete beams, the Bernoulli Hypothesis is usually valid, in other words, it is considered that the strain is linearly distributed over the cross section. However, such simplification cannot be applied to certain types of structures, characterized by the existence of concentrated loads or abrupt changes on the cross section, which causes the strain distribution along the cross section to be non-linear. Among these regions, simply called by D-regions, it can be emphasized the deep beams and, for this type of structure, it should be used other methods of analysis, such as the Strut and Tie Method (STM), the Finite Element Method (FEM) or the Stringer-Panel Method (SPM). This research s main objective is presenting the analysis and design s procedure of deep beams by SPM, by a manual approach, once the main researches related to this method focus on computational application. SPM had its first applications in civil engineering by the 1960s, and it adopts the principle of dividing a structure into stringers, which aims to absorb the axial forces, and panels, which absorb shear forces. The stringers reinforcement is calculated by relating the effective force and steel strength and for panels it s adopted the membrane elements design process, according to Plasticity Theory. Concrete compressive stresses must be checked and don t exceed its reduced strength, which varies for stringers and panels. The design of two practical examples of deep beams was conducted by SPM, and the resulting reinforcement have been compared to beams conventional model, recommended by the Brazilian standard ABNT NBR 6118:2014, and STM. Moreover, the deep beams were examined by non-linear analysis, using the computer programs SPanCAD and ATENA 2D, in order to make a comparison of both solutions. By the performed analysis, it could be concluded that SPM is a method as attractive as STM, whereas usual structures can be designed by a simple application of Statics equations.