Predição estruturada aplicada à detecção de estrutura retórica

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Andreani, Alexandre Cassimiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Maringá
Brasil
Departamento de Informática
Programa de Pós-Graduação em Ciência da Computação
UEM
Maringá, PR
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.uem.br:8080/jspui/handle/1/2547
Resumo: The rhetorical structure reveals whether the text is adequate with a structure established and recognized by other readers of a given literary genre. This work investigates if features coming from the structure, that is, the sequence in which the elements appear in the text contributes to its correct detection. For this, a study of structured prediction algorithms applied to the rhetorical structure detection problem was done. The objective was to discover a structured prediction algorithm that is more suitable for this type of problem. To evaluate the proposed system were used two corpora of scientific abstracts written in Portuguese and already annotated with information on the rhetorical structure. Both are composed of scientific abstracts extracted from works in several areas of Computer Science and annotated according to a rhetorical structure model composed of six categories, namely: Context, Gap, Purpose, Methodology, Result and Conclusion.In this work, this same model was used, allowing the direct comparison of the proposed predictor with the AZPort classifier. Detection using CRF, a structured prediction, had a 68% vs. 61% F1-score of the AZPort. Thus, it was verified that structured prediction algorithms benefit the task of automatically detecting the rhetorical structure of scientific abstracts.