Modelo matemático de crescimento tumoral com difusão e tratamento

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Abreu, Anderson Inácio Salata de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.uel.br/handle/123456789/16825
Resumo: Resumo: Neste trabalho apresenta-se modelos matemáticos envolvendo equações diferencias ordinárias(EDO) e equações diferencias parciais (EDP), que modelam o crescimento tumoral No modelode EDO aplica-se dois tipos de tratamento, radioterapia e quimioterapia, enquanto que nomodelo de EDP aplica-se apenas o tratamento via quimioterapia As derivadas dos modelos sãoaproximadas utilizando o método de diferenças finitas Análises de convergência dos sistemassão realizadas e, simulações numéricas são apresentadas para encenar diversos tipos de tratamentosatravés da radioterapia e quimioterapia para o câncer de mama e o câncer de pulmãoO objetivo é compreender o desenvolvimento do tumor ao longo do tempo e o efeito da aplicaçãodos tratamentos nos modelos Os resultados numéricos obtidos mostram-se coerentes coma análise matemática, visto que as soluções numéricas convergiram para pontos de equilíbriosdos sistemas