Análise de previsão de preços de ações de uma carteira otimizada, utilizando análise envoltória de dados, redes neurais artificiais e modelo de box-jenkins

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Cechin, Rafaela Boeira
Orientador(a): Corso, Leandro Luís
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://repositorio.ucs.br/handle/11338/3660
Resumo: O mercado de ações atrai cada vez mais investidores, por sua alta rentabilidade, quando comparado com outras opções de investimentos. Porém, esta comercialização de ativos possui um alto risco, sendo aconselhável utilizar conceitos matemáticos para auxiliar na tomada de decisões. Este trabalho visou estudar alguns desses conceitos aplicados na bolsa de valores, para maximizar o retorno e controlar os riscos. Primeiramente, para a seleção de carteira de ativo foi utilizada a Análise Envoltória de Dados (DEA), para em seguida, prever o preço das ações das empresas selecionadas. Para esta prognose, foi realizada uma comparação de modelos de previsão de séries temporais, com o uso das Redes Neurais Artificiais e da metodologia Box-Jenkins. Para o cálculo da DEA, foram utilizados indicadores como preço/lucro, retorno, entre outros, como variáveis de entrada e saída. Já para a previsão, foi empregado o preço diário de dia comercial para cada uma das empresas previamente selecionadas para a carteira otimizada. Para o estudo com DEA, obtevese um portfólio otimizado com retorno 15 vezes maior do que o índice Ibovespa; e para o comparativo dos métodos de previsão, concluiu-se que a metodologia BoxJenkins foi a mais indicada para prever preço de ações, por ter menores médias de erros.