Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Cechin, Rafaela Boeira |
Orientador(a): |
Corso, Leandro Luís |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
https://repositorio.ucs.br/handle/11338/3660
|
Resumo: |
O mercado de ações atrai cada vez mais investidores, por sua alta rentabilidade, quando comparado com outras opções de investimentos. Porém, esta comercialização de ativos possui um alto risco, sendo aconselhável utilizar conceitos matemáticos para auxiliar na tomada de decisões. Este trabalho visou estudar alguns desses conceitos aplicados na bolsa de valores, para maximizar o retorno e controlar os riscos. Primeiramente, para a seleção de carteira de ativo foi utilizada a Análise Envoltória de Dados (DEA), para em seguida, prever o preço das ações das empresas selecionadas. Para esta prognose, foi realizada uma comparação de modelos de previsão de séries temporais, com o uso das Redes Neurais Artificiais e da metodologia Box-Jenkins. Para o cálculo da DEA, foram utilizados indicadores como preço/lucro, retorno, entre outros, como variáveis de entrada e saída. Já para a previsão, foi empregado o preço diário de dia comercial para cada uma das empresas previamente selecionadas para a carteira otimizada. Para o estudo com DEA, obtevese um portfólio otimizado com retorno 15 vezes maior do que o índice Ibovespa; e para o comparativo dos métodos de previsão, concluiu-se que a metodologia BoxJenkins foi a mais indicada para prever preço de ações, por ter menores médias de erros. |