Uma arquitetura de Agentes BDI para auto-regulação de Trocas Sociais em Sistemas Multiagentes Abertos

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Gonçalves, Luciano Vargas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Catolica de Pelotas
Informática
BR
Ucpel
Mestrado em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ucpel.edu.br:8080/jspui/handle/tede/105
Resumo: O estudo e desenvolvimento de sistemas para o controle de interações em sistemas multiagentes é um tema em aberto dentro da Inteligência Artificial. O sistema de valores de trocas sociais de Piaget é uma abordagem social que possibilita fundamentar a modelagem de interações de agentes, onde as interações são vistas como trocas de serviços entre pares de agentes, com a valorização dos serviços realizados e recebidos, ou seja, investimentos e ganhos na troca realizada, e, também os créditos e débitos a serem cobrados ou recebidos, respectivamente, em trocas futuras. Esta avaliação pode ser realizada de maneira diferenciada pelos agentes envolvidos, considerando que estes apresentam traços de personalidade distintos. No decorrer de processo de trocas sociais a forma diferenciada de avaliar os ganhos e perdas nas interações pode causar desequilíbrio nos balanços de trocas dos agentes, onde alguns agentes acumulam ganhos e outros acumulam perdas. Para resolver a questão do equilíbrio das trocas, encontrou-se nos Processos de Decisão de Markov Parcialmente Observáveis (POMDP) uma metodologia capaz de auxiliar a tomada de decisões de cursos de ações na busca do equilíbrio interno dos agentes. Assim, cada agente conta com um mecanismo próprio para avaliar o seu estado interno, e, de posse das observações sobre o comportamento de troca dos parceiros, torna-se apto para deliberar sobre as melhores ações a seguir na busca do equilíbrio interno para o par de agentes. Com objetivo de operar em sistema multiagentes aberto, torna-se necessário um mecanismo para reconhecer os diferentes traços de personalidade, viabilizando o uso de POMDPs nestes ambientes. Esta tarefa de reconhecimento é desempenhada pelos Modelos de Estados Ocultos de Markov (HMM), que, a partir de modelos de traços de personalidade conhecidos, podem inferir os traços aproximados de novos parceiros de interações, através das observações sobre seus comportamentos nas trocas. O objetivo deste trabalho é desenvolver uma arquitetura de agentes híbrida para a auto-regulação de trocas sociais entre agentes baseados em traços de personalidade em sistemas multiagentes abertos. A arquitetura proposta é baseada na arquitetura BDI (Beliefs, Desires, Intentions), onde os planos dos agentes são obtidos através de políticas ótimas de POMDPs, que modelam traços de personalidade reconhecidos através de HMMs. Para avaliar a proposta, foram realizadas simulações envolvendo traços de personalidade conhecidos e novos traços