Uma abordagem evolucionária e espacial para o jogo da autorregulação de processos de trocas sociais em sistemas multiagentes

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Macedo, Luís Felipe Kiesow de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.furg.br/handle/1/6408
Resumo: Interações sociais são frequentemente descritas como trocas sociais. Na literatura, trocas sociais em Sistemas Multiagentes são objeto de estudo em diversos contextos, nos quais as relações sociais são interpretadas como trocas sociais. Dentre os problemas estudados, um problema fundamental discutido na literatura e a regulação¸ ao de trocas sociais, por exemplo, a emergência de trocas equilibradas ao longo do tempo levando ao equilíbrio social e/ou comportamento de equilíbrio/justiça. Em particular, o problema da regulação de trocas sociais e difícil quando os agentes tem informação incompleta sobre as estratégias de troca dos outros agentes, especificamente se os agentes tem diferentes estratégias de troca. Esta dissertação de mestrado propõe uma abordagem para a autorregulacao de trocas sociais em sistemas multiagentes, baseada na Teoria dos Jogos. Propõe o modelo de Jogo de Autorregulacão ao de Processos de Trocas Sociais (JAPTS), em uma versão evolutiva e espacial, onde os agentes organizados em uma rede complexa, podem evoluir suas diferentes estratégias de troca social. As estratégias de troca são definidas através dos parâmetros de uma função de fitness. Analisa-se a possibilidade do surgimento do comportamento de equilíbrio quando os agentes, tentando maximizar sua adaptação através da função de fitness, procuram aumentar o numero de interações bem sucedidas. Considera-se um jogo de informação incompleta, uma vez que os agentes não tem informações sobre as estratégias de outros agentes. Para o processo de aprendizado de estratégias, utiliza-se um algoritmo evolutivo, no qual os agentes visando maximizar a sua função de fitness, atuam como autorregulares dos processos de trocas possibilitadas pelo jogo, contribuindo para o aumento do numero de interações bem sucedidas. São analisados 5 diferentes casos de composição da sociedade. Para alguns casos, analisa-se também um segundo tipo de cenário, onde a topologia de rede é modificada, representando algum tipo de mobilidade, a fim de analisar se os resultados são dependentes da vizinhança. Alem disso, um terceiro cenário é estudado, no qual é se determinada uma política de influencia, quando as medias dos parâmetros que definem as estratégias adotadas pelos agentes tornam-se publicas em alguns momentos da simulação, e os agentes que adotam a mesma estratégia de troca, influenciados por isso, imitam esses valores. O modelo foi implementado em NetLogo.