Algoritmos de estimação para modelos Markovianos não-homogêneos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Lee, Gustavo Alexis Sabillón
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-10062020-104710/
Resumo: Os modelos Markovianos ocultos são um paradigma estatístico que podem ser utilizados para modelar processos estocásticos onde valores observáveis dependem diretamente de uma sequência de variáveis aleatórias não observáveis. No modelo Markoviano oculto o sistema que está sendo modelado é considerado um processo de Markov com estados não observáveis (isto é, ocultos) e em cada estado oculto temos a emissão de um valor observável. Os modelos Markovianos ocultos podem ser homogêneos ou não-homogêneos. O foco principal deste trabalho, serão os modelos Markovianos não-homogêneos. Neste trabalho, apresentamos alguns procedimentos de estimação utilizados com modelos Markovianos. A estimação dos parâmetros é realizada sob abordagem Bayesiana e frequentista, fazendo uma comparação da performance dos mesmos usando algumas métricas como o erro quadrático médio e o viés dos estimadores. As comparações dos modelos são desenvolvidas utilizando diferentes critérios para comparação de modelos como o Bayes Information Criterion e o Deviance Information Criteria.