Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Ribeiro Júnior, José Roberto |
Orientador(a): |
Figueira, Fábio Gomes
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Carlos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufscar.br/handle/20.500.14289/5873
|
Resumo: |
The main objective of this work is to prove that the map B defined on F and taking values in B, where F is the set of all continuous functions from Sn to Rn and B is the set of all nonempty closed subsets of Sn, invariant under the antipodal map, which assign to each f 2 F the set fx 2 Sn; f(x) = f(��x)g, is continuous when the topology of F is the topology induced by the usual metric, and the topology of B is the upper semi-finite topology. Considering in F the topology induced by the usual metric, we will have that the finest topology in B such that the map B is continuous is the upper semi-finite topology. |