Modelo alfa normal assimétrico multivariado para redes de classificação

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Souza, Anderson Luiz Ara
Orientador(a): Louzada Neto, Francisco lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/7760
Resumo: In this Thesis we expose the proposition of a new class of probability distributions, the so called alpha skew normal multivariate, an extension of the univariate Normal Alpha distribution, introduced by Elal-Olivero (2010). It can accommodates up to two modes and generalizes the distribution proposed by Elal-Olivero in its marginal components. In addition, we apply this new distribution in the construction of two new data mining methods for classi cation. The procedures developed here increment the predictive ability of the classi cation in the presence of asymmetric and / or bimodal data. The results indicate that the new proposal is signi cantly more appropriate than the usual modeling by classical normal distribution, and is also suitable for datasets without the presence of asymmetry. In this thesis it is shown, using real and synthetic data, the procedures of construction, estimation and validation for the new probability distribution and for probabilistic networks for binary classi cations, particularly for the k-dependence probabilistic networks.