Graduações de grupo na álgebra das matrizes triangulares superiores

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Menis, Alexandra Cristina
Orientador(a): Fidelis, Marcello lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/5863
Resumo: In this work we study group gradings on the upper triangular matrices algebra UTn(F), which have several applications in the PI-algebra theory. Our main purpose is to exhibit a description of all _nite gradings of UTn(F) by a group G up to isomorphism. To begin with, we restrict to the case where the base _eld F is algebraically closed of characteristic zero and the group G is _nite abelian. Using the method of group representation we present an explicit description of the duality between G-actions and G-gradings on an associative algebra, and such duality plays an important role in the proof of the main result presented for this case. Finally, the proof of the general result, for an arbitrary base _eld F and an arbitrary group G, accomplished by an alternative approach deeply based on semi-simplicity properties of rings is presented.