Modelos de Lévy de atividade infinita
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/ufscar/13138 |
Resumo: | In this work, we present a class of pure jump Lévy processes A, with internal filtration and Itô-Lévy decomposition and we established an explicit forms for martingale representation, main component of our process. Furthermore, we propose an optimal Itô-Meyer formula for a Lévy functional and Euler-Maruyama approach scheme for a path-dependent SDE driven by A Lévy process. For that, first, we close A by a Poisson process composed of Ae , that we proved to converge strongly in B2 to A, when e ↓ 0. This result is fundamental to show that, given a supermartingale Snell envelope S, we can approach it through an imbedded discrete structure , which is the sequence of value processes, associated with S. |