Superfícies mínimas e a teoria min-max de Almgren--Pitts

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Viveiros, Anderson Felipe
Orientador(a): Barreto, Alexandre Paiva lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/12047
Resumo: First, we introduce the basic concept of minimal surfaces and develop some results in the general theory of minimal surfaces. In the second part, we are interested in the Simon-Smith Min-Max approach to prove the existence of minimal surfaces in compact tridimensional riemannian manifolds (COLDING; DE LELLIS, 2003). This is done using the concept of varifolds, object studied in Geometric Measure Theory. In the third part, we consider min-max minimal surfaces in tridimensional manifolds and we prove some rigidity results under the hypothesis of positive scalar and Ricci curvatures (MARQUES; NEVES, 2012). An important tool here is the so called Ricci flow.