Uma análise bayesiana para dados composicionais

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Obage, Simone Cristina
Orientador(a): Achcar, Jorge Alberto lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4505
Resumo: Compositional data are given by vectors of positive numbers with sum equals to one. These kinds of data are common in many applications, as in geology, biology, economy among many others. In this paper, we introduce a Bayesian analysis for compositional data considering additive log-ratio (ALR) and Box-Cox transformations assuming a mul- tivariate normal distribution for correlated errors. These results generalize some existing Bayesian approaches assuming uncorrelated errors. We also consider the use of expo- nential power distributions for uncorrelated errors considering additive log-ratio (ALR) transformation. We illustrate the proposed methodology considering a real data set.