Clonagem gênica e caracterização de uma enzima tipo-luciferase de coleópteros não bioluminescentes e sua relação com a origem da atividade luminescente

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Prado, Rogilene Aparecida
Orientador(a): Viviani, Vadim lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular - PPGGEv
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/5399
Resumo: Bioluminescence in beetles is dependent on luciferase which evolved from AMP/CoA ligases. The cDNA of a luciferase-like enzime was cloned from the Malpighian tubules of Zophobas morio mealworm (Coleoptera: Tenebrionidae). The gene product of this cDNA displays weak luminescence and it is composed of 528 aminoacids residues with N-terminal and C-terminal sequences signal addressed to smooth endoplasmic reticulum membrane. Although having a low identity (26-32%) with beetle luciferases, this enzyme is a reasonable protoluciferase model to investigate the origin and evolution of beetle luciferases. The luciferin binding site is higly conserved among the beetle luciferases. However, in this protoluciferase of Z. morio, most of these residues of this motif are substituted by others. Using a site-directed mutagenesis survey some of aminoacids residues of this protoluciferase, which are located at correspondent luciferin binding site of luciferases, were replaced by the conserved residues of beetle luciferases. Most of the substitutions had negative effect on the luminescent activity, however, the substitution I327T, which is located in a β-hairpin motif close to the luciferin binding site, improved the luminescence activity. Such substitution indicates the importance of this motif for luciferase activity and indicates a possible route for the evolution of bioluminescence function of beetle luciferase. Since this enzyme is located in the Malpighian tubules, which are involved in excretion and metabolization of carboxylic substrates, this enzyme could be involved to excretion the some type of chemical compound. Regardless of the function the results show that the potential for bioluminescent activity is older and probably arose before the divergences of the Coleoptera bioluminescent families.