Redes neurais em grafos para aprendizado positivo: uma abordagem utilizando reescrita

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Messias, Guilherme Henrique
Orientador(a): Valejo, Alan Demétrius Baria lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/20326
Resumo: Given the increasing volume of data generated by society, the task of classification has become even more complex, as some supervised classification algorithms require a substantial amount of labeled data to achieve good performance. On the other hand, even with the use of a few labeled examples from the positive class, relevant results can be obtained by semi-supervised learning algorithms based on Positive and Unlabeled Learning (PUL). These algorithms can be applied to a variety of data types, including relational data, which can be represented by graphs. In this context, machine learning algorithms based on neural networks show relevant results, particularly Graph Neural Networks (GNNs). Additionally, the recent research area of graph rewiring has shown a performance gain in GNNs. This work aims to explore the use of graph rewiring and graph neural networks to address PUL problems, under the hypothesis that these approaches are capable of learning a latent representation space biased by the positive data. The results of experiments conducted on a range of datasets show that the proposed approach is superior to classical and current algorithms in the literature, both in negative data extraction and in the PUL task.