Especialização de comunicação e políticas em aprendizado por reforço com múltiplos agentes heterogêneos utilizando redes neurais de grafos
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.fei.edu.br/handle/FEI/3447 https://doi.org/10.31414/EE.2021.T.131375 |
Resumo: | Esta tese apresenta uma arquitetura de rede neural voltada ao aprendizado de políticas em sistemas multi-agentes totalmente cooperativos, compostos de agentes heterogêneos e comunicativos. O ambiente é formalizado como um Processo de Decisão de Markov Parcialmente Observável Descentralizado e os estados transformados em grafos direcionados rotulados atribuídos de agentes e entidades. Vértices representam agentes e entidades; os rótulos dos vértices, suas classes, sendo todos os agentes dentro de uma mesma classe considerados homogêneos entre si; arcos direcionados representam a capacidade dos agentes de adquirir informação de outras entidades; e vetores armazenados nos vértices representam as características que descrevem agentes e entidades, ou as observações dos agentes. A topologia de rede neural proposta usa camadas totalmente conectadas para codificar as observações dos agentes; convoluções relacionais em grafos para aprender mecanismos de comunicação específicos para diferentes pares de classes; e diferentes redes neurais treinadas utilizando aprendizado por reforço para modelar as políticas das classes de agentes. A tese apresenta dois métodos. No primeiro, os módulos de codificação e aprendizado de funções valor-ação são modelados como redes neurais distintas para cada classe de entidade e agente, e o treinamento do modelo é feito utilizando uma memória de repetição de transições. O segundo método usa compartilhamento de parâmetros entre as classes de agentes para obter uma rede neural com menos parâmetros, assim como emprega camadas recorrentes e treinamento com amostras de uma memória de repetição de episódios. A comunicação relacional é comparada à comunicação realizada através de mecanismos de atenção e à ausência de comunicação entre os agentes. Também é testada a compatibilidade do método com outras contribuições disponíveis na literatura, como a regularização por relações temporais e o mixing aditivo. Testes realizados no ambiente do StarCraft Multi-Agent Challenge demonstram que o emprego de camadas de convolução relacionais para a especialização da comunicação entre agentes viabiliza desempenho comparável ou superior aos outros métodos em todos os cenários testados, principalmente naqueles com maior número de classes de agentes. Já a combinação da comunicação relacional com o mixing aditivo apresentou, geralmente, os melhores resultados |