Modelos de regressão PLS com erros heteroscedásticos

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Morellato, Saulo Almeida
Orientador(a): Diniz, Carlos Alberto Ribeiro lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/4541
Resumo: Two problems related to Partial Least Squares method are considered in this work. Heteroscedastic errors and an asymmetrical error distribution. In the _rst part of this work a methodology is developed which allows, based in PLS methods, to estimate the model parameters in the presence of non-constant error variance. This technique is compared with the usual PLS method which considers homoscedastic erros. The PLS method is an distribution free approach, that is, it does not assume any distribution for the error terms. In order to estimate the heterocedastic structure an probability distribution is attributed to the errors, similar to the idea of Bastien et al: (2005). In this work, it is proposed a class of asymmetric distributions, the asymmetric normal distribution, presented in Azzalini (1985), which includes the normal distribution as a particular case. For the heteroscedasticity detection is proposed adaptations of the White test, the Goldfeld-Quandt test and an test proposed by Xei et al: (2009), which is used for testing the homogeneity of the scale parameter and/or signi_cance of autocorrelation in skew-normal nonlinear regression model. The test methods are illustrated with two numerical examples. All the methods present in the work are illustrated with simulated and real datasets.