Detalhes bibliográficos
Ano de defesa: |
2002 |
Autor(a) principal: |
OLIVEIRA JUNIOR, Waldemar Araujo de Santa Cruz |
Orientador(a): |
CRIBARI NETO, Francisco |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/6416
|
Resumo: |
Heteroscedasticidade é uma caracterísstica comumente encontrada em dados de corte transversal. Vários autores têm estudado o comportamento de estimadores consistentes da matriz de covariâncias do estimador de mínimos quadrados ordinánarios dos parâmetros lineares de regressão quando há heteroscedasticidade de forma desconhecida. Entre os estimadores propostos e estudados encontram-se aqueles conhecidos como HC0 (proposto por Halbert White em 1980), HC1, HC2 e HC3. Resultados de simulacão em alguns artigos favorecemo estimador HC3 ou aproximações deste estimador; ver, por exemplo, MacKinnon & White (1985). Cribari Neto & Galvão (2002), a partir dos resultados em Galvão (2000), generalizaram os resultados obtidos por Cribari Neto, Ferrari & Cordeiro (2000), obtendo uma seqüência de estimadores ajustados por viés que pode ser inicializada em qualquer dos quatros estimadores listados acima. A presente dissertação utiliza integração ao numérica para obter resultados exatos sobre a qualidade da proximação de primeira ordem usada em testes quase t cujas estatísticas utilizam estimativas consistentes da variância do estimador de mínimos quadrados ordinários. Os resultados obtidos mostram que o teste que mais se beneficia de usar estimadores corrigidos por viés é aquele cuja estatística de teste é construída usando o estimador HC0. Adicionalmente, a utilização de estimativas da variância do tipo HC3 corrigidas por viés conduz a testes menos precisos, ao invés de conduzir a testes com menor distorção de tamanho. Por fim, mostra-se que a estratégia de inferência a ser preferida é a utilização de estimadores HC3 sem correção de viés |