Espaços de Hardy radial

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Francheto, Victor Hugo Falcão
Orientador(a): Hoepfner, Gustavo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/12462
Resumo: One presents in this work an atomic decomposition via radial atoms for distributions on subspace $\mathcal{H}^{p}_{rad}(\mathds{R}^{n})$ for $0 < p\leqslant 1$, of Hardy radial spaces $H_{rad}^{p}(\mathds{R}^{n}) \doteq H^{p}(\mathds{R}^{n}) \cap \mathcal{S}'_{rad}(\mathds{R}^n)$. Such atomic decomposition tell us that, if $f \in \mathcal{H}^{p}_{rad}(\mathds{R}^{n})\subseteq H_{rad}^{p}(\mathds{R}^n)$, then $f$ has an atomic decomposition and the atoms of its decomposition are radials. This work extends a theorem proved by R. R. Coifman and G. Weiss in which the authors give a radial atomic decomposition for radial functions in $H^1(\mathds{R}^n)$ where the atoms of such decomposition are radial functions. The decomposition that we present here give us similar about the atoms radiallity for $0<p\leqslant 1$. Specifically we define a maximal radial Hardy space and we prove an atomic decomposition for this spaces via radial atoms