Heat equation and the Yamabe flow on manifolds with fibered boundary metric

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Souza, Bruno Caldeira Carlotti de
Orientador(a): Hartmann Junior, Luiz Roberto lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/14939
Resumo: This work is dedicated to the study of the Yamabe flow on a class of non-compact complete Riemannian manifolds with fibered boundary and infinite volume, called Phi-manifolds. Some examples of this type of manifold include gravitational instantons, products of an asymptotically conical manifold with a closed manifold, and non-abelian magnetic monopoles. Through assumptions on the regularity of the initial scalar curvature, we prove both the existence and uniqueness of the flow for short time. Moreover, assuming the initial scalar curvature to be negative, bounded, and bounded away from zero, we show that the curvature-normalized flows exist for all time and, further, that they converge to some Riemannian metric with constant scalar curvature.