Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Holz, Juliana Pelisoli
 |
Orientador(a): |
Ligabue, Rosane Angélica
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais
|
Departamento: |
Faculdade de Engenharia
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/3192
|
Resumo: |
One area of nanotechnology of great interest is the formation of nanoparticles (nanospheres and nanocapsules) because it allows the development of controlled release formulations, in other words, those with the ability to properly release the actives agents. In such products, the active ingredient protected is gradually released through appropriate stimulus. There is a special interest in the preparation of nanoparticles of biodegradable polymers, for example, polyesters such as poly-lactic acid and glycolic and its copolymers, such as acid poly(lactic-co-glycolic) (PLGA), considering its biocompatibility and biodegradation. In this context, this study has as objective to produce nanospheres from the PLGA biodegradable polymer containing menthol through the technique of multiple emulsion/solvent evaporation. The prepared PLGA / menthol micro and nanospheres, presented mostly average diameters between 217 and 13,103 nm, Tg 41 °C and thermal stability up to 260 °C. The presence of menthol in the micro and nanospheres was demonstrated by the characterization techniques used, as well as the physical presence of menthol aroma perceptiple to the smell. At last, was made a preliminary valuation of the efficiency of incorporation of aroma, showing to be effective, since the micro and nanospheres with a higher concentration of menthol in its formulation demonstrated from the techniques used (relation between the heights of the bands of menthol and PLGA in IR and through the higher mass loss relative to the menthol in the TGA), present approximately 60% more menthol incorporated into the polymer matrix of these micro and nanoparticles in relation to others |