Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Tasoniero, Felipe Roque
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Barros, Rodrigo Coelho
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/10117
|
Resumo: |
Pesquisas recentes sobre modelos de Renderização Diferenciável relacionados à reconstrução 3D de imagens utilizam modelos totalmente convolucionais para extração de features ou para o processamento de decodificação. Por outro lado, várias tarefas de visão computacional como reconhecimento visual, segmentação, geração de imagens e detecção de objetos tiveram grande melhoria de desempenho ao fazer uso de modelos baseados em self-attention, conhecidos tradicionalmente como Transformers. Devido a tal sucesso, neste trabalho pretendemos explorar quatro diferentes abordagens de modelos baseados em selfattention para reconstrução implícita de objetos 3D. Em nossa primeira abordagem, implementamos as camadas de self-attention da SAGAN junto as camadas convolucionais; em nossa segunda abordagem, implementamos o modelo patchwise self-attention para substituir completamente o codificador convolucional. Em seguida, implementamos um modelo de Transformer chamado Pyramid Vision Transformer para substituir o codificador convolucional do modelo DVR; finalmente, em nossa quarta abordagem, implementamos o modelo Nyströmformer como um otimizador para reduzir o custo computacional e para melhorar a capacidade de extração de features. Considerando todas as abordagens, nossos resultados mostraram que podemos alcançar resultados competitivos usando Transformers, bem como adicionando um otimizador para reduzir seu custo computacional. Com a aplicação do modelo de otimização e consequente redução do custo computacional, foi possível modificar o módulo referente ao decodificador de forma a melhorar os resultados de reconstrução, alcançando melhorias de até 8,5% em relação aos baselines. |