Avaliação da utilização de microcosmos como ferramenta de análise da eficácia de biomonitoramento no controle de vazamento de CO2

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Licks, Leticia Azambuja dos Santos lattes
Orientador(a): Iglesias, Rodrigo Sebastian lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/8206
Resumo: The climate changes associated with the increase of greenhouse gases emissions to the atmosphere stand out as one of the greatest current environmental concerns. Extensive research is being conducted in order to reduce the amount of emissions and their impact on climate. Carbon dioxide (CO2) is the main greenhouse gas contributing to this problem. Therefore, it is increasingly important to find solutions to reduce CO2 levels in the atmosphere. Among the feasible techniques to reduce these emissions is the geological storage, which consists of injecting large amounts of this gas into deep underground geological formations. To be effective, CO2 must be trapped in these deep geological formations for at least several centuries. In this context, monitoring of CO2 leakages and seepages to sensitive environments is a key step in the process. Research on monitoring and verification of CO2 leakages in shallow environments are carried out in large areas prepared for controlled injection and leakage of this gas, this techniques for its detection are hard and expensive. In this sense, this study aims to verify the use of microcosms as a biomonitoring tool to control CO2 leakage by conducting controlled injections of CO2 into continuous flow columns under different experimental conditions. For this, physical, chemical and microbiological analyzes were performed in the soil before, during and after percolation of CO2 in the column. These parameters were also analyzed with in situ soil samples. Based on statistical methods at the end of the study, it was observed that the design of the columns was suitable, however, the chosen parameters were insufficient to determine the influence of CO2 on the proposed test conditions.