[en] METHOD FOR AUTOMATIC DETECTION OF STAMPS IN SCANNED DOCUMENTS USING DEEP LEARNING AND SYNTHETIC DATA GENERATION BY INSTANCE AUGMENTATION

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: THALES LEVI AZEVEDO VALENTE
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60136&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60136&idi=2
http://doi.org/10.17771/PUCRio.acad.60136
Resumo: [pt] Documentos digitalizados em ambientes de negócios substituíram grandes volumes de papéis. Profissionais autorizados usam carimbos para certificar informações críticas nesses documentos. Muitas empresas precisam verificar o carimbo adequado de documentos de entrada e saída. Na maioria das situações de inspeção, as pessoas realizam inspeção visual para identificar carimbos. Assim sendo, a verificação manual de carimbos é cansativa, suscetível a erros e ineficiente em termos de tempo gasto e resultados esperados. Erros na verificação manual de carimbos podem gerar multas de órgãos reguladores, interrupção de operações e até mesmo comprometer fluxos de trabalho e transações financeiras. Este trabalho propõe dois métodos que combinados podem resolver esse problema, automatizando totalmente a detecção de carimbos em documentos digitalizados do mundo real. Os métodos desenvolvidos podem lidar com conjuntos de dados contendo muitos tipos de carimbos de tamanho de amostra pequena, com múltiplas sobreposições, combinações diferentes por página e dados ausentes. O primeiro método propõe uma arquitetura de rede profunda projetada a partir da relação entre os problemas identificados em carimbos do mundo real e os desafios e soluções da tarefa de detecção de objetos apontados na literatura. O segundo método propõe um novo pipeline de aumento de instâncias de conjuntos de dados de carimbos a partir de dados reais e investiga se é possível detectar tipos de carimbos com amostras insuficientes. Este trabalho avalia os hiperparâmetros da abordagem de aumento de instâncias e os resultados obtidos usando um método Deep Explainability. Foram alcançados resultados de última geração para a tarefa de detecção de carimbos combinando com sucesso esses dois métodos, alcançando 97.3 por cento de precisão e 93.2 por cento de recall.