Enhancing domain adaptation on visual data

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Renato Sérgio Lopes Júnior
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
Programa de Pós-Graduação em Ciência da Computação
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/59366
Resumo: Recentemente, as redes neurais profundas têm sido amplamente utilizadas para resolver uma variedade de problemas em diferentes áreas. Por exemplo, as redes neurais convolucionais mudaram completamente o cenário da Visão Computacional, alcançando resultados notáveis em tarefas como classificação de imagens e detecção de objetos. No entanto, para se obter bons resultados, é necessária uma grande quantidade de dados rotulados para treinar estas redes, o que constitui um dos principais obstáculos na sua adoção, uma vez que coletar e rotular esta grande quantidade de dados pode consumir muito tempo e recursos. Portanto, os métodos de adaptação de domínio usam dados rotulados que já estão disponíveis em um domínio de origem diferente, mas semanticamente relacionado, para treinar um modelo que possa fazer previsões corretas sobre os dados nos quais estamos interessados, o domínio de destino, evitando assim o alto custo de rotulagem. Este trabalho apresenta duas novas abordagens para melhorar ainda mais o desempenho de adaptação em domínios visuais na tarefa de classificação de imagens. Além disso, também realizamos um estudo de caso para investigar a viabilidade de realizar adaptação de domínio em um cenário do mundo real, considerando a tarefa de detecção automática do uso de Equipamentos de Proteção Individual com redes neurais convolucionais. Experimentos demonstram que nossas abordagens propostas são capazes de melhorar os resultados dos seus métodos base e fornecer insights significativos para trabalhos futuros sobre adaptação de domínio.