Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Testa, Estevão Smania |
Orientador(a): |
Musse, Soraia Raupp |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/8285
|
Resumo: |
Planos de evacuação têm sido historicamente usados como uma medida de segurança para a construção de edifícios. Os simuladores existentes requerem ambientes 3D totalmente modelados e tempo suficiente para preparar e simular cenários. Uma vez que a quantidade de pessoas pode mudar ao longo do tempo, várias simulações são frequentemente necessárias para gerar um plano de evacuação otimizado. Neste documento é apresentado uma nova abordagem para estimar os dados resultantes de um dado cenário de evacuação sem simula-lo de fato. Para tal o ambiente é dividido o ambiente em salas modulares com configurações diferentes, em um estilo divisão e conquista. Em seguida, uma rede neural artificial é treinada para estimar os dados desejados de uma sala sozinha. Após coletar os dados estimados de cada sala, uma heurística capaz de agregar informações por sala é desenvolvida para que o ambiente completo possa ser devidamente estimado. Esse método apresenta erros dentro da margem de 30% quando comparado o tempo de evacuação em um ambiente real e complexo. Além disso, não é necessário modelar o ambiente 3D, aprender como configurar um simulador de multidões e o tempo computacional para estimar é instantâneo quando comparado ao melhor caso de um simulador de multidões. |