[pt] CLASSIFICANDO IMAGENS COM PADRÕES INCERTOS: DAS PROPRIEDADES VISUAIS À IMPORTÂNCIA DA NARRATIVA

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: YAN MARTINS BRAZ GUREVITZ CUNHA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61995&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61995&idi=2
http://doi.org/10.17771/PUCRio.acad.61995
Resumo: [pt] O campo de classificação de imagens tem sido bastante explorado há anos, em especial com o grande avanço de redes neurais da última década. No entanto, grande parte do foco tem sido dedicado a casos com grandes diferenças inter-classe e pequenas diferenças intra-classe. Neste trabalho exploramos o quão bem redes convolucionais lidam com casos com pequenas diferenças inter-classe e cujas classificações carregam um grau de subjetividade, torando não óbvia a relação entre features visuais e classifcação e diferenciando isso do campo tradicional de fine-grained classificaiton. Para isso, abordamos um caso específico deste problema: Determinar a importância narrativa de um personagem a partir somente de sua imagem. Avaliamos a performance de CNNs em nossa tarefa, usando um dataset que criamos para ela, e analisamos que padrões conseguimos encontrar no quis diz respeito da relação entre features visuais e classifcação. Mostramos que, especificamente para a tarefa que estudamos, CNNs conseguem superar a performance humana em termos de acurácia e, além disso, refletem vários dos padrões apresentados por humanos quando julgam personagens, até mesmos alguns padrões que não refletem a realidade. Isto significa que esse tipo de modelo pode ser um possível substiuto para avaliadores humanos para propósitos de character design.