[pt] ESTIMAÇÃO DE MODELOS LOGLINEARES COM DADOS FALTANTES: UMA APLICAÇÃO AO SAEB 99

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: DENIS PAULO DOS SANTOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2493&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2493&idi=2
http://doi.org/10.17771/PUCRio.acad.2493
Resumo: [pt] Geralmente, em análises estatísticas, dados faltantes em ao menos uma variável resulta da completa eliminação da unidade respondente. Esta estratégia, padrão na maioria dos pacotes estatísticos, não produz resultados livres de viés, a não ser que os dados faltantes sejam Missing Completly At Random (MCAR). A tese mostra a classificação usada para o mecanismo gerador de dados faltantes e a modelagem de dados categóricos levando em conta os dados faltantes. Para isto, utiliza-se o modelo loglinear em combinação com o algoritmo EM (Expectation-Maximization). Esta combinação produz o algoritmo conhecido como ECM (Expectation-Conditional Maximization). A aplicação do método é feita com os dados do SAEB (Sistema Nacional de Avaliação da Educação Básica) para o ano de 1999, investigando a relação entre o responsável pelo desenvolvimento do projeto pedagógico na escola e o impacto na proficiência média da escola.