Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Assunção, Fernando
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15082012-203206/
Resumo: Modelos preditivos têm sido cada vez mais utilizados pelo mercado a fim de auxiliarem as empresas na mitigação de riscos, expansão de carteiras, retenção de clientes, prevenção a fraudes, entre outros objetivos. Entretanto, durante o desenvolvimento destes modelos é comum existirem, dentre as variáveis preditivas, algumas que possuem dados não preenchidos (missings), sendo necessário assim adotar algum procedimento para tratamento destas variáveis. Dado este cenário, este estudo tem o objetivo de discutir metodologias de tratamento de dados faltantes em modelos preditivos, incentivando o uso de algumas delas já conhecidas pelo meio acadêmico, só que não utilizadas pelo mercado. Para isso, este trabalho descreve sete metodologias. Todas elas foram submetidas a uma aplicação empírica utilizando uma base de dados referente ao desenvolvimento de um modelo de Credit Score. Sobre esta base foram desenvolvidos sete modelos (um para cada metodologia descrita) e seus resultados foram avaliados e comparados através de índices de desempenho amplamente utilizados pelo mercado (KS, Gini, ROC e Curva de Aprovação). Nesta aplicação, as técnicas que apresentaram melhor desempenho foram a que tratam os dados faltantes como uma categoria à parte (técnica já utilizada pelo mercado) e a metodologia que consiste em agrupar os dados faltantes na categoria conceitualmente mais semelhante. Já a que apresentou o pior desempenho foi a metodologia que simplesmente não utiliza a variável com dados faltantes, outro procedimento comumente visto no mercado.