[pt] SUMARIZAÇÃO AUTOMÁTICA DE MULTIPLAS AVALIAÇÕES UTILIZANDO AJUSTE FINO DE MODELOS DE LINGUAGEM TRANSFORMERS
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53550&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53550&idi=2 http://doi.org/10.17771/PUCRio.acad.53550 |
Resumo: | [pt] Sumarização automática é a tarefa de gerar resumos concisos, corretos e com consistência factual. A tarefa pode ser aplicada a diversos estilos textuais, dentre eles notícias, publicações acadêmicas e avaliações de produtos ou lugares. A presente dissertação aborda a sumarização de múltiplas avaliações. Esse tipo de aplicação se destaca por sua natureza não supervisionada e pela necessidade de lidar com a redundância das informações presentes nas avaliações. Os trabalhos de sumarização automática são avaliados utilizando a métrica ROUGE, que se baseia na comparação de n-gramas entre o texto de referência e o resumo gerado. A falta de dados supervisionados motivou a criação da arquitetura MeanSum, que foi a primeira arquitetura de rede neural baseada em um modelo não supervisionado para essa tarefa. Ela é baseada em auto-encoder e foi estendida por outros trabalhos, porém nenhum deles apresentou os efeitos do uso do mecanismo de atenção e tarefas auxiliares durante o treinamento do modelo. O presente trabalho é dividido em duas etapas. A primeira trata de um experimento no qual extensões à arquitetura do MeanSum foram propostas para acomodar mecanismos de atenção e tarefas auxiliares de classificação de sentimento. Ainda nessa etapa, explora-se o uso de dados sintéticos para adaptar modelos supervisionados a tarefas não supervisionadas. Na segunda etapa, os resultados obtidos anteriormente foram utilizados para realizar um estudo sobre o uso de ajuste fino (fine-tuning) de modelos de linguagem Transformers pré-treinados. A utilização desses modelos mostrou ser uma alternativa promissora para enfrentar a natureza não supervisionada do problema, apresentando um desempenho de + 4 ROUGE quando comparado a trabalhos anteriores. |