[en] ASSESSMENT OF FINE-TUNING ON END-TO-END SPEECH RECOGNITION MODELS
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61086&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61086&idi=2 http://doi.org/10.17771/PUCRio.acad.61086 |
Resumo: | [pt] Utilizar representações fornecidas por um grande modelo pré-treinado tornou-se a principal estratégia para alcançar o estado da arte nas mais variadas tarefas. Um grande modelo pré-treinado recentemente proposto, wav2vec 2.0, foi seminal para vários outros trabalhos sobre pré-treinamento de grandes modelos em dados de fala. Muitos modelos estão sendo pré-treinados usando a mesma arquitetura baseada em transformer que o wav2vec 2.0 e estão obtendo o estado da arte em várias tarefas relacionadas à fala. No entanto, poucos trabalhos propuseram maiores análises sobre o comportamento desses modelos em diferentes cenários de fine-tuning. Nosso trabalho visa analisar esse modelo sobre dois aspectos diferentes. O primeiro é sobre a transferibilidade entre línguas desses modelos. Nossos experimentos nos mostraram que o tamanho dos dados usados durante o pré-treinamento desses modelos não é tão crucial para a transferibilidade quanto a diversidade. Percebemos que o desempenho das línguas indo-europeias é superior ao das línguas não indo-europeias nos modelos avaliados. Vimos uma transferência positiva de conhecimento entre línguas usando modelos monolinguais, o que foi percebido em todos os idiomas que usamos, mas foi mais evidente quando o idioma usado durante o pré-treinamento era mais semelhante ao idioma do fine-tuning. O segundo aspecto que investigamos em nosso trabalho é quão bem esses modelos se comportam em cenários de desbalanceamento de dados, onde há um subconjunto mais representativo no conjunto de dados do fine-tuning. Nossos resultados mostraram que o desbalanceamento dos dados no fine-tuning geralmente afeta o resultado final dos modelos, com melhor desempenho nos subconjuntos mais representativos. No entanto, uma maior variabilidade no conjunto de treinamento favorece o desempenhodo modelo para um subconjunto mais representativo. Porém essamaior variabilidade nos dados não favoreceu os idiomas não vistos durante o treinamento. Observamos também que os modelos parecem mais robustos em lidar com o desbalanceamento de gênero do que idade ou sotaque. Com esses achados, esperamos ajudar a comunidade científica na utilização de modelos pré-treinados existentes, bem como auxiliar no pré-treinamento de novosmodelos. |